A Compact Transport and Charge Model for GaN-based High Electron Mobility Transistors for RF applications

نویسندگان

  • Ujwal Radhakrishna
  • Dimitri A. Antoniadis
  • Leslie Kolodziejski
چکیده

Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) are rapidly emerging as front-runners in high-power mm-wave circuit applications. For circuit design with current devices and to allow sensible future performance projections from device engineering in such a rapidly evolving technology, compact device models are essential. In this thesis, a physics-based compact model is developed for short channel GaN HEMTs. The model is based on the concept of virtual source (VS) transport originally developed for scaled silicon field effect transistors. Self-consistent current and charge expressions in the model require very few parameters. The parameters have straightforward physical meanings and can be extracted through independant measurements. The model is implemented in Verilog-A and is compatible with state of the art circuit simulators. The new model is calibrated and validated with experimental DC I-V and S-parameter measurements of fabricated devices. Using the model, a projection of cut-off frequency (fT ) of GaN-based HEMTs with scaling is performed to highlight performance bottlenecks. Thesis Supervisor: Dimitri A. Antoniadis Title: Ray and Maria Stata Professor of Electrical Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of hydrostatic pressure and temperature on the AlGaN/GaN High electron mobility transistors

In this paper, drain-source current, transconductance and cutoff frequency in AlGaN/GaN high electron mobility transistors have been investigated. In order to obtain parameters of exact AlGaN/GaN high electron mobility transistors such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects a...

متن کامل

Non-linear modeling, analysis, design and simulation of a solid state power amplifier based on GaN technology for Ku band microwave application

A new non-linear method for design and analysis of solid state power amplifiers is presented and applied to an aluminum gallium nitride, gallium nitride (AlGaN-GaN) high electron-mobility transistor (HEMTs) on silicon-carbide (SiC) substrate for Ku band (12.4 13.6 GHz) applications. With combining output power of 8 transistors, maximum output power of 46.3 dBm (42.6 W), PAE of 43% and linear ga...

متن کامل

Polarization-engineered removal of buffer leakage for GaN transistors

A dopant-free epitaxial technique is developed to achieve highly insulating buffers on semi-insulating GaN templates for nitride high electron mobility transistors by using the large polarization fields. The buffer leakage current density is reduced by several orders of magnitude, exhibiting outstanding insulating and breakdown properties. The simple polarizationand heterostructure-based soluti...

متن کامل

Interfacial charge effects on electron transport in III-Nitride metal insulator semiconductor transistors

We report on the calculation of the two dimension electron gas (2DEG) mobility in scaled AlGaN/ GaN metal-insulator-semiconductor high-electron-mobility-transistors. We investigate the effect of remote impurity and phonon scattering models on the 2DEG mobility of the dielectric/AlGaN/GaN structure and investigate its variation with dielectric/AlGaN interface charge density, 2DEG concentration, ...

متن کامل

Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high- electron-mobility transistors by use of ac transconductance method

Articles you may be interested in Investigation of gate leakage mechanism in Al2O3/Al0.55Ga0.45N/GaN metal-oxide-semiconductor high-electron-mobility transistors Appl. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013